Success Criteria for finding the nth term of an arithmetic sequence.

No	Success Criteria	Completed?
1	Find the difference between each term and check if the differences are all the	
	same.	
Eg	4, 11, 18, 25 \rightarrow Here, the difference each time is +7	
2	This difference becomes the n co-efficient (the number in front of n).	
Eg	In our example, the difference is 7 so the first term becomes $t_n=7n$	
3	Substuitute n for 1 so that you find out what the first term in the sequence	
	should be.	
Eg	7n \rightarrow 7(1) = 7 so the first term should be 7.	
4	Compare the answer to No 3 (ie 7) to the actual number in the sequence (ie 4)	
	and form an expression by adding or subtracting the difference.	
Eg	$7n = 7(1) = 7$. Here, the answer needs to be 4, so subtract 3. $t_n = 7n-3$ becomes	
	the expression for the nth term.	
5	To find the 738 th term, just substitute n=738.	
Eg	$7n-3 = 7(738) - 3 = 5166$ is the 738^{th} term in the sequence.	
6	To find if a number is in the sequence, just rearrange the equation and check	
	if the value of n	
Eg	So is 5227 a member of this sequence?	
	$t_n = 7n - 3$	
	$\therefore t_n + 3 = /n$	
	$t \perp 3$	
	$\therefore \frac{c_n + s}{7} = n$	
	7	
	5227 + 3	
	$\therefore n =7$	
	5 000	
	$=\frac{5230}{2}$	
	7	
	= 747 remainder 1	
	The remainder of 1 means that the number 5227 is not in the sequence.	